PHYS 301 Electricity and Magnetism

Dr. Gregory W. Clark Fall 2019

Today!

- Quiz!
- Integral vector calculus:Fundamental theorem of divergences
- Electric fields

Integral Calculus: Divergences

• The fundamental theorem of divergences:

$$\iint_{\text{Vol}} (\vec{\nabla} \cdot \vec{B}) \ dV = \oint_{\text{surface}} \vec{B} \cdot d\vec{A}$$

- Also called GAUSS' THM or GREEN's THM
- NOTE:

 $d\vec{A} = \hat{n} dA$ where \hat{n} is \perp the surface, pointing outward from the enclosed volume.

 $\vec{B} \cdot \hat{n} = \text{component of } \vec{B} \perp \text{surface.}$

ELECTROSTATICS

[Source charges at rest]

• Basic problem: Find forces on test charge due to source charges

• Superposition Principle holds for forces and vector fields

COULOMB'S LAW:

$$\vec{F} = \frac{1}{4\pi\varepsilon_o} \frac{qQ}{r^2} \dot{s}$$

where

 $\varepsilon_{0} = 8.85 \times 10^{-12} \, C^{2} / Nm^{2}$

for point charges ${\it q}$ and ${\it Q}$

ELECTRIC FIELD:

$$\vec{E} = \vec{F} / Q$$

SO, FOR THE SOURCE POINT CHARGES &E

ELECTROSTATICS

[Source charges at rest]

• Basic problem:

Find forces on test charge due to source charges

• Superposition Principle holds for forces and vector fields

THE ELECTRIC FIELD:

For a single point charge: $\vec{E} = \frac{1}{4\pi\varepsilon_o} \frac{q}{\mathbf{r}^2} \hat{\mathbf{r}}$

For a differentially small point charge: $d\vec{E} = \frac{1}{4\pi\varepsilon_o} \frac{dq}{\mathbf{r}^2} \hat{\mathbf{r}}$

For continuous charge distribution: $\vec{E} = \int d\vec{E} = \frac{1}{4\pi\varepsilon_o} \int \frac{dq}{\mathbf{r}^2} \hat{\mathbf{r}}$

where $\varepsilon_o = 8.85 \times 10^{-12} \, C^2 \, / \, Nm^2$